DNA Methylation Divergence and Tissue Specialization in the Developing Mouse Placenta.
نویسندگان
چکیده
The placental epigenome plays a vital role in regulating mammalian growth and development. Aberrations in placental DNA methylation are linked to several disease states, including intrauterine growth restriction and preeclampsia. Studying the evolution and development of the placental epigenome is critical to understanding the origin and progression of such diseases. Although high-resolution studies have found substantial variation between placental methylomes of different species, the nature of methylome variation has yet to be characterized within any individual species. We conducted a study of placental DNA methylation at high resolution in multiple strains and closely related species of house mice (Mus musculus musculus, Mus m. domesticus, and M. spretus), across developmental timepoints (embryonic days 15-18), and between two distinct layers (labyrinthine transport and junctional endocrine). We observed substantial genome-wide methylation heterogeneity in mouse placenta compared with other differentiated tissues. Species-specific methylation profiles were concentrated in retrotransposon subfamilies, specifically RLTR10 and RLTR20 subfamilies. Regulatory regions such as gene promoters and CpG islands displayed cross-species conservation, but showed strong differences between layers and developmental timepoints. Partially methylated domains exist in the mouse placenta and widen during development. Taken together, our results characterize the mouse placental methylome as a highly heterogeneous and deregulated landscape globally, intermixed with actively regulated promoter and retrotransposon sequences.
منابع مشابه
O-37: Pseudomalignant Nature of Placenta during Normal and Pathological Gestation Is Regulated by Epigenetic Mechanisms which Can be Exploited To Design Non-Invasive Fetal Dna Markers
Background Placentation shares many analogues with the development of tumors such as rapid proliferation, invasiveness, gene expression profiles especially the expression of tumor suppressor genes, oncogenes and matrixmetallo proteinases (MMPs). Thus, a placenta has been described as a pseudomalignant tissue. However, placentation is tightly regulated and any deregulation of this pseudomalignan...
متن کاملP-128: The Effect of DNA Methyl Transferase1 Inhibitor (RG108) on DNA Methylation Pattern of Cloned Mouse Embryos
Background: In somatic cell nuclear transfer (SCNT) method of cloning, transferred nucleus should be dedifferentiated from differentiated state to embryonic state. Molecular analysis showed that the reprogramming in the transferred nucleus was incomplete and cloned embryos have epigenetic abnormalities such as high DNA methylations levels. Since methylation in pre-implantation embryos has a cri...
متن کاملP-70: Evidence for Differential Gene Expression of A Major EpigeneticModifier Enzyme, de novo DNA Methyltransferase 3b, through Vitrification of Mouse Ovary Tissue
Background: Ovarian tissue cryopreservation is a feasible method to preserve female reproductive potential, especially in young patients with cancer or in women at risk of premature ovarian failure. Vitrification has recently emerged as a new trend for biological specimen preservation. On the other hand, gene expression that changes during vitrification can influence oocyte maturation and need ...
متن کاملP-94: Mouse Embryo Vitrification Cannot Effect on Global DNA Methylation in Preimplantation Stage
Background: Embryo vitrification was effectively used for assisted reproductive techniques. Despite the undeniable benefits of vitrification, cooling and warming stress, and cytotoxicity of cryoprotectant may affect the DNA methylation that have an important role in gene activation and silencing. In the present study effects of 2-cell embryo vitrification on DNA methylation in hatched blastocys...
متن کاملA convenient method to generate methylated and un-methylated control DNA in methylation studies
Methylated and un-methylated control DNA is an important part of DNA methylation studies. Although human and mouse DNA methylation control sets are commercially available, in case of methylation studies on other species such as animals, plants, and bacteria, control sets need to be prepared. In this paper a simple method of generating methylated and un-methylated control DNA is described. Whole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 34 7 شماره
صفحات -
تاریخ انتشار 2017